Learning to be a Bot: Reinforcement Learning in Shooter Games

نویسندگان

  • Michelle McPartland
  • Marcus Gallagher
چکیده

This paper demonstrates the applicability of reinforcement learning for first person shooter bot artificial intelligence. Reinforcement learning is a machine learning technique where an agent learns a problem through interaction with the environment. The Sarsa( ) algorithm will be applied to a first person shooter bot controller to learn the tasks of (1) navigation and item collection, and (2) combat. The results will show the validity and diversity of reinforcement learning in a first person shooter environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RETALIATE: Learning Winning Policies in First-Person Shooter Games

In this paper we present RETALIATE, an online reinforcement learning algorithm for developing winning policies in team firstperson shooter games. RETALIATE has three crucial characteristics: (1) individual BOT behavior is fixed although not known in advance, therefore individual BOTS work as “plugins”, (2) RETALIATE models the problem of learning team tactics through a simple state formulation,...

متن کامل

Learning Policies for First Person Shooter Games Using Inverse Reinforcement Learning

The creation of effective autonomous agents (bots) for combat scenarios has long been a goal of the gaming industry. However, a secondary consideration is whether the autonomous bots behave like human players; this is especially important for simulation/training applications which aim to instruct participants in real-world tasks. Bots often compensate for a lack of combat acumen with advantages...

متن کامل

Creating Human-like Autonomous Players in Real-time First Person Shooter Computer Games

This paper illustrates how we create a software agent by employing FALCON, a self-organizing neural network that performs reinforcement learning, to play a well-known first person shooter computer game known as Unreal Tournament 2004. Through interacting with the game environment and its opponents, our agent learns in real-time without any human intervention. Our agent bot participated in the 2...

متن کامل

Game Designers Training First Person Shooter Bots

Interactive training is well suited to computer games as it allows game designers to interact with otherwise autonomous learning algorithms. This paper investigates the outcome of a group of five commercial first person shooter game designers using a custom built interactive training tool to train first person shooter bots. The designers are asked to train a bot using the tool, and then comment...

متن کامل

Learning Human Behavior from Observation for Gaming Applications

The gaming industry has reached a point where improving graphics has only a small effect on how much a player will enjoy a game. The focus has turned to adding more humanlike characteristics into computer game agents. Machine learning techniques are scarcely being used in games, although they do offer powerful means for creating humanlike behaviors in agents. The first person shooter (FPS), Qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008